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Abstract. Langlandset al considered two crossing probabilities,πh andπhv , in their extensive
numerical investigations of critical percolation in two dimensions. Cardy was able to find the
exact form ofπh by treating it as a correlation function of boundary operators in theQ → 1
limit of the Q-state Potts model. We extend his results to find an analogous formula forπhv

which compares very well with the numerical results.

1. Introduction

Critical percolation in two dimensions has been intensively studied numerically by
Langlandset al [1, 2]. One of the results they find is that various crossing probabilities,
πh, πhv (to be defined below), are invariant under conformal transformations of the plane.
In [3], by combining a standard identification of critical percolation and the 1-state Potts
model with boundary conformal field theory techniques, Cardy was able to find the exact
form of πh. There are three steps needed to extend this toπhv:

(i) show thatπhv corresponds to some particular boundary conditions in the 1-state Potts
model, and thus is given by a correlation function of conformal field theory boundary
operators;

(ii) identify these boundary operators;
(iii) deduce a differential equation for the correlation function, and compare the result

with πhv.

In this letter we complete steps (i) and (iii). Of course, this is far from being a complete
derivation ofπhv, but having shown that it is given by a correlation function of boundary
operators, then one knows thatπhv must satisfy one of a discrete set of known differential
equations, and examining the simplest of these we find a single function which has suitable
asymptotic behaviour. Comparing this function with the numerical data forπhv presented
in [2], our agreement is as good as that of Cardy’s formula forπh.

2. Critical percolation and boundary conformal field theory

For an extremely good presentation of critical percolation, and the full content of the
hypotheses of universality and conformal invariance, we refer the reader to [1]. At
its simplest, one can envisage a rectangle, and take as observables all combinations of
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probabilities of crossing from one set of points on the boundary to another disjoint set. The
hypothesis of conformal invariance is that such probabilities are invariant under conformal
transformations of the plane. For example, the probabilities,πh, of crossing from the left
side to the right, andπhv of being able to cross simultaneously from left to right and from
top to bottom, depend only upon the aspect ratior of the rectangle. It is easy to see that,
with r = height/width,

πhv(r) = πhv(1/r) πhv(r)/ πh(r) → 1 as r → 0. (2.1)

Langlandset al provide numerical values forπh andπhv for aspect ratios 0.136< r < 7.351.
The property of the crossing probabilities described above, that they are invariant under

conformal mappings of the plane, is that of correlation functions ofh = 0 boundary operators
in a c = 0 conformal field theory. (For a review of boundary operators in conformal field
theory, see e.g. [4, 5].) It was in this way that Cardy was able to find a formula forπh(r).
It will be instructive to repeat the relevant points of his derivation here.

The combination(1− πh) may be identified with theQ → 1 limit of the Q-state Potts
model partition function with specific boundary conditions, namely free boundary conditions
on the vertical sides of the rectangle, and the spins fixed to different values on the horizontal
sides. One can identify this partition function as the correlation function of four operators,
placed at the corners of the rectangle, which change the boundary conditions.

By considering the 2- and 3-state Potts models, for which the correspondence with
c = 1/2 andc = 4/5 conformal field theories is very well known, Cardy could identify the
relevant boundary changing operators as type(1, 2) boundary primary fields. This implied
that the correlation function of four such operators should satisfy a second-order differential
equation. This equation is very easy to solve, and by taking the appropriate combination
of the two independent solutions of this equation, Cardy could fit the data of [1] to a very
high degree of accuracy. In fact, this fit was so good that Langlandset al decided to adopt
Cardy’s result asπh, rather than their own numerical data, in their later paper on more
complicated calculations [2].

3. Boundary conditions for πhv

One can similarly findπhv from the Q → 1 limit of the Q-state Potts model partition
function with certain other boundary conditions which, exactly as forπh, are not themselves
defined forQ = 1. There is a standard argument relating the partition function in the Potts
model to a sum over a graphical expansion [6]. In this, one considers all sets of ‘clusters’ξ ,
where a cluster is a connected set of bonds on a lattice, and no two clusters intersect. Then
the partition function may be written as a sum over clusters, with weights which depend
upon the type of cluster, corresponding to the type of boundary conditions one wishes to
impose. For our purposes, it will be enough to consider a partition function defined for a
square lattice on a rectangle with the sides of the rectangle consecutively numbered 1 to 4,
and to consider an expansion of the form

Z(a, b, c, d, Q) =
∑

ξ

pB(ξ)(1 − p)B−B(ξ)aNa(ξ)bNb(ξ)cNc(ξ)dN−Na(ξ)−Nb(ξ)−Nc(ξ) (3.1)

wherep is the normalized Boltzmann weight for an edge connecting sites with the same
spin, and which will be set to the critical probabilitypc = 1/2 for a bond to be open,
when we finally takeQ → 1. In (3.1), B is the total number of bonds,B(ξ) is the
number of bonds inξ , N is the total number of clusters,Na, Nb andNc are the numbers
of clusters intersecting no sides of the rectangle, exactly 1 side and two adjacent sides
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respectively, anda, b, c and d are weights which depend upon the boundary conditions.
Taking a = b = c = d = Q one recovers theQ-state Potts model partition function for
free boundary conditions, andZ(1, 1, 1, 1, 1) = 1 in the 1-state Potts model. However, if
one can arrange boundary conditions such that, asQ → 1, a → 1, b → 1 andc → 1
and d → 0, then one will recover the probability that no cluster intersects non-adjacent
boundaries, i.e. 1− πh − πv + πhv.

Let us consider the following boundary condition, which we denote by(AB . . . C): in
this boundary condition the spin at each site in the boundary may take its value freely in any
of the statesA, B, . . . , C. If we assign the conditionsbi to the four sides of the rectangle
in turn,

b1 = (A, B, X11, X12, . . . , X1n) b2 = (B, C, X21, X22, . . . , X2n)

b3 = (C, D, X31, X32, . . . , X3n) b4 = (D, A, X41, X42, . . . , X4n)
(3.2)

where all the spins{Xij } and{A, B, C, D} are distinct, then we see that the partition function
of the Q-state Potts model with these boundary conditions will be in the form (3.1) with
weightsa = Q, b = n + 2, c = 1 andd = 0. Then, if we taken = (Q − 5)/4 (which is
perfectly valid forQ = 5, 9, . . .) and thenQ → 1, we shall recover the required weights
for our crossing probability, i.e.

lim
Q→1

Z(Q, (Q + 3)/4, 1, 0, Q) = 1 − πh − πv + πhv = πhv (3.3)

where we take for granted the universality of critical percolation and setπh + πv = 1 as is
the case for percolation by sites on a triangular lattice.

Unfortunately, the boundary changing operator which changes the boundary conditions
from type (A, B, X11, X12, . . . , X1n) to (B, C, X21, X22, . . . , X2n) does not exist in the 2-
state Potts model for anyn, and has only been identified to date forn = 0 in the 3-state Potts
model [4, 7], and consequently we cannot deduce a differential equation forZ. However,
on the basis of this argument, we can certainly expect thatπhv is expressible as some
correlation function of fourh = 0 conformal boundary primary fields.

4. Differential equations for correlation functions

Correlations of conformal primary fieldsφh(z) can satisfy differential equations, one
differential equation for each null state in the highest-weight representations of the
Virasoro algebra with highest-weight stateφh(0) |0〉, and the general method by which
such differential equations are derived is given in [8]. Since the space of null vectors is a
highest-weight space, one can restrict attention to the differential equations arising from the
vanishing of highest-weight states. Forh = c = 0 it is easy to compute the highest-weight
states with low conformal weight in the Verma module and we give the first four of these
in table 1. The four-point functions of fourh = 0 boundary primary fields will only depend
upon the cross ratioη, of their coordinates, so we shall write

〈φ(z1)φ(z2)φ(z3)φ(z4)〉 = F(η)

whereη = ((z3−z4)(z2−z1))/((z3−z1)(z2−z4)). The differential equations arising from the
first three null vectors are equally easy to derive, and are given, along with their solutions,
in table 2. The conditions (2.1) translate into

F(η) = F(1 − η)
F (η)

η1/3
2F1(1/3, 2/3; 4/3; η)

→ 30(2/3)

0(1/3)2
asη → 0. (4.1)
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Table 1. Low-lying highest-weight vectors in theh = c = 0 Verma module.

Level n Null vector N (n)

1 L−1 |0〉
2 (L−1L−1 − (2/3)L−2) |0〉
5

(
L3

−1 − 6L−2L−1 + 6L−3

)
N (2)

7

(
L5

−1 − (40/3)L−2L
3
−1 + (256/9)L−2L−2L−1 + (52/3)L−3L−1L−1

− (256/9)L−3L−2 − (104/3)L−4L−1 + (208/9)L−5

)
N (2)

It is impossible to find a solution of typeF (1) or F (2) which satisfies (4.1), but there is a
unique solution of typeF (5) which does, and which can be presented variously as

F(z) = 0(2/3)

0(1/3)2

∫ z

0

dt

[t (1 − t)]2/3
− 2

30(1/3)0(2/3)

∫ z

0

dt

[t (1 − t)]2/3

∫ t

0

du

[u(1 − u)]1/3

= 0(2/3)

0(1/3)2

∫ z

0

dt

[t (1 − t)]2/3
− 1

0(1/3)0(2/3)

∫ z

0

dt

[t (1 − t)]2/3

×2F1(1, 4/3; 5/3; t)

= 30(2/3)

0(1/3)2
z1/3

2F1(1/3, 2/3; 4/3; z) − z

0(1/3)0(2/3)
3F2(1, 1, 4/3; 2, 5/3; z)

(4.2)

where2F1 is the standard hypergeometric function, and3F2 is a generalized hypergeometric
function.

Table 2. Differential operators and solutions.

Level n

1
d

dz

F (1) c1

2 (z(z − 1))−2/3 d

dz
(z(z − 1))2/3 d

dz

F (2) c1 + c2

∫ z

0

dx

(x(1 − x))2/3

5 (z(z − 1))−2 d3

dz3
(z(z − 1))4/3 d

dz
(z(z − 1))2/3 d

dz

F (5) c1 +
∫ z

0

dx

(x(1 − x))2/3

[
c2 +

∫ x

0
dt

c3 + c4t + c5t
2

(t (1 − t))4/3

]

5. Comparison with data and discussion

The case treated in [2] is of the crossing probabilities defined for a rectangle of aspect
ratio r. If we take the pointszj to be at(−k−1, −1, 1, k−1), then we can map these to the
corners of a rectangle by

w =
∫ z

0

dx√
(1 − x2)(1 − k2x2)
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Figure 1. A plot of ln(πhv(r)) against ln(r) for the analytic formula and the data.

in which case the aspect ratio of the rectangle is given byr = K(1 − k2)/2K(k2), where
K(u) is the complete elliptic integral of the first kind. The cross ratio of these four points
is η = ((1 − k)/(1 + k))2.

In figure 1 we plot log(πhv) against log(r) for both the numerical results obtained in [2]
and for the functionF(x) above. The agreement is excellent†.

There are still several points which remain unclear in the results presented here. First,
the integral expression ofπh found by Cardy can be easily identified as one of the standard
solutions of Dotsenko and Fateev [9]. However, despite the fact thatF satisfies the standard
differential equations for a type (3, 4) primary field, we have not yet been able to find a
way to express (4.2) in Dotsenko–Fateev form. If one allows more general vertex operator
constructions, such as forW -algebras, then it is easy to see how the troublesome second
term in F might arise as a screened four-point function: one way, using purely bosonic
vertex operators, is

lim
w→∞

∫ z

0
dt

∫ t

0
du

〈
3α + β + γ

∣∣Vα(w)Vα(1)V0(z)Vβ(t)Vγ (u)Vα(0)
∣∣0

〉
whereα2 = 1/2, αβ = −2/3, αγ = −1/3, βγ = 0 and whereVλ(z) ≡: exp(iλφ(z)) : is
a bosonic vertex operator,Vα represents a weight 0 field, and

∫
Vβ and

∫
Vγ are screening

charges. However, we have not yet found any pressing case for such an interpretation for
any particular extended algebra.

Second, althoughF(z) satisfies the fifth-order differential equation in table 2, it also

† In fact Langlandset al only computedπhv for r < 1, since it is invariant underr → 1/r, and consequently
half of the data points we give are duplicated.
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satisfies the third-order differential equation

d

dz
(z(z − 1))1/3 d

dz
(z(z − 1))2/3 d

dz
F = 0. (5.1)

This is a much more appealing equation as the three independent crossing probabilities
1, πh, πhv span the solutions to (5.1), but this equation does not arise from the vanishing of
a vector at level 3 in theh = 0 Virasoro Verma module. It would be very nice indeed if
this equation could be derived from a null vector vanishing for some generalization of the
Virasoro algebra, such as those in [10, 11], but we have not been able to do this yet.

6. Conclusions

From a simple extension of Cardy’s method of [3], we have found an excellent candidate
for the crossing probabilityπhv which was investigated numerically by Langlandset al
in [2]. Unfortunately, we have not been able to find a real derivation of our result, but work
is in progress which should elucidate rather more the nature of the conformal field theory
underlying this result.

I would very much like to thank Yvan Saint-Aubin for many discussions on percolation and
crossing probabilities, and lattice models, conformal field theory and partition functions in
general, and J Cardy and G Grimmett for very interesting discussions on this problem, and
for their comments on earlier drafts.

I would also like to thank H Kausch for many useful discussions on the structure of
c = 0 conformal field theory, and the many bizarre possibilities which arise in this case,
and W Eholzer for drawing [11] to my attention.
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